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Isotropic spheres or droplets dispersed in a smectic freely suspended film can self-organize in chains that
interact with the c-director field of the embedding smectic material. Spontaneous buckling of such chains has
been reported when the chains grow under geometrical restrictions, by incorporation of additional droplets. We
refine the original model for incompressible chains by taking into account a finite energy associated with the
variation of the intrachain droplet-droplet-distance. In addition to the wavelength selection described already
by the inelastic chain model, the refined model yields a critical threshold for spontaneous buckling, in agree-
ment with experimental observations.
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I. INTRODUCTION

An interesting phenomenon observed in suspensions of
isotropic droplets in liquid crystalline phases is their interac-
tion and self-organization via the orientational elasticity of
the anisotropic matrix. In nematic phases, the interactions of
oil or water droplets have been studied extensively �1–5�. In
free standing smectic-C and C* films, chaining of isotropic
or cholesteric droplets has been described �e.g., �6–10��.
Qualitatively, one can consider this as an analogy to chaining
in electrorheological fluids �11�.

In the investigated material, each droplet carries a pair of
half-integer defects of the c-director field �local orientation
of the smectic-C film� at its boundary �9,10�, and the droplet
itself can be described qualitatively by a virtual defect of
strength S=1. Droplets and their attached defects impose dis-
tortions in the c-director field of the surrounding film and
form topological dipoles, which interact by orientational
elastic forces in the smectic film and lead to the spontaneous
chaining of the droplets.

The equilibrium configuration of such droplet chains is
straight, with regular equilibrium droplet distances within the
chains �6,7� depending on the droplet diameters and the an-
choring conditions of the c-director at the droplet border. The
c-director is aligned to the chain direction and antiparallel on
both sides of the chain.

Recently, the observation of an instability in such chain
structures �Figs. 1 and 2� has been reported, which occurs in
films where droplet chains are regularly arranged in a circu-
lar pattern �target pattern� of the c-director �10�. The films
have lateral dimensions of 1 mm and above, with uniform
film thicknesses below 1 �m �in the order of 100 smectic
layers�. Droplet sizes are in the micrometer range. Details of
the experiment, the preparation of the target pattern, and con-
trol of droplet density are described elsewhere �10�. Figures
1 and 2 show reflection microscopy images of free standing
smectic-C films, observed with crossed polarizers �horizontal
and vertical�. In dark domains, the c-director is parallel to
one of the polarizers, in bright regions it is diagonal.

The droplet density can be controlled by the illumination
of the photosensitive mesogenic film material �cis-trans-
isomerization of the azoxy-derivative�. With increasing light
intensity, the cis-isomer concentration rises and smectic
material may melt locally into the isotropic phase. New

droplets appear in the film, they are incorporated into exist-
ing chains so that the chains grow in length. Short chain
segments �Fig. 3�, arranged tangentially in the target pattern,
grow until they completely fill circular rings. Closed rings
can grow further only by developing characteristic undula-
tions. At some threshold droplet density, the chains are sub-
ject to a spontaneous buckling with rather well-defined peri-
odicity �Fig. 2�. The amplitude of the undulations increases
with increasing droplet density, while the wavelength is al-
most insensitive to the experimental conditions. There is a
striking analogy to biological growth processes and Euler
buckling observed in a variety of physical and biological
systems �12–15�.

The density of droplets increases towards the inner
chains, which collect most of the droplets that form in the
film middle �“hurricanes eye”�. Buckling starts with the in-
nermost chains when a certain “supersaturation” is reached.
Below that critical value, completely filled chains remain
circular �Fig. 1� and may be compressed, i.e., the internal

FIG. 1. �Color online� Droplet chains in a target pattern of the
c-director field. The droplets consist of molten, isotropic film ma-
terial. Individual droplets are not resolved in the picture �cf. Fig.
3�a��, the droplet chains are seen as dark lines. The image shows
completely filled �supersaturated� chain rings before the onset of
buckling, the image width is 0.4 mm.
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droplet distance becomes smaller than the equilibrium value.
Figure 3�b� compares a chain from an outer, incompletely
filled ring �left� with a segment of a closed ring that is not
buckled yet �right�. Its compression reaches about 10%.
While the wavelength selection has been predicted already
with a simple model for incompressible chains �10�, the ex-
istence of a critical droplet density for buckling is not ob-
tained within that model. In the extension presented here, we
allow for a compressibility of the chains and obtain an ex-
pression for a critical droplet density leading to the onset of
the undulation.

We treat the chains as elastic strings characterized by a
certain bending rigidity, a longitudinal compressibility and
an interaction with their neighbors, mediated by the
c-director field. A spatial restriction is imposed by the cir-
cumference of a given circular chain. In the model, we make

the following three assumptions: �1� Droplets in the chains
have an equilibrium distance, and a force is necessary to
elongate or compress the chains. �2� The chains prefer a
straight shape, any chain deflection costs energy. This energy
is associated with the curvature of the c-director field be-
tween neighboring chains, and with a chain bending rigidity.
The latter is related to elastic forces of the c-director field
surrounding each droplet. �3� The chains prefer an equilib-
rium distance between each other. There is no straightfor-
ward way to measure this force, but its presence is suggested
by the experimental observations �see Fig. 1�. A direct quan-
titative relation between the c-director field distortions and
the interchain potential cannot be given until a rigorous cal-
culation of the director configuration has been achieved.
Some additional assumptions are made to keep the model
simple, they will not influence the qualitative predictions.

II. MODEL AND DISCUSSION

Figure 4 sketches the simplified model geometry. The
circular chains in the cylindrical arrangement have been
“unwrapped” to Cartesian coordinates. The box dimensions
are �0 and y0. In the actual experimental geometry, �0
corresponds to the circumference of a closed ring, and y0
to the radial range completely filled with droplet rings.
The undulations are described by an ansatz u�x ,y�
=u0 sin�qyy�cos�qxx�.

A parameter ��y� describes the excess droplet density, it
defines the theoretical length �= �1+��y���0 of a force-free
chain at position y, given by the number of droplets and the
equilibrium droplet distance in the chain. The expression
�+1=N /N0 gives the ratio of the actual number N of drop-
lets in the chain and the number N0 of droplets in a relaxed
straight chain of length �0 �in the experiment, the number of
droplets that fill a closed chain with a given radius�. We
assume that ��y� is a monotonically increasing function of y
with the value S in the innermost ring. We may use an ansatz
�=S sin�qyy� with qy =� / �2y0�, but the choice of this func-
tion is not crucial. With other functions, one obtains some-
what different quantitative results for thresholds, but the
same critical wavelengths, as shown below.

The energy necessary to reduce or increase the droplet-
droplet distance in a single chain is described with the ansatz
�Hooke’s law� WL1=�1���y�−L�y��2 /2, where

FIG. 3. �a� Enlarged detail of a target pattern with individual
droplets in the chains resolved. The chains prefer bend regions of
the c-director and contract these regions to slightly more than the
droplet diameter. Arrows mark the two chains compared in �b�. �b�
Comparison of a free chain �left� with a compressed, but still almost
straight chain �right�, for better comparison every 10th droplet is
marked with a white cross. The chain is compressed by approxi-
mately 10%.

FIG. 2. �Color online� Buckling of droplet chains after increas-
ing the droplet density, image width �0.4 mm, geometry and po-
larizers as in Fig. 1.

FIG. 4. Model geometry of the chain deformation and wave-
length selection �see text�.
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L�y� = �
0

�0

u�x,y�dx � �1 +
1

4
qx

2u0
2 sin2�qyy���0

is the actual chain length, which differs from � when the
chain is stretched or compressed. A specific energy WL �per
film area� is obtained after division of WL1 by the effective
area per single chain, �0dC, dC being the equilibrium inter-
chain distance. One obtains

WL = �� � 2����y� − L�y��2

= �� � 2��S sin�qyy� − 1
4qx

2u0
2 sin2�qyy��2 �1�

with the compression modulus �=�1 / �dC�0�.
The second specific energy contribution is related to the

curvature of the chains and to the bend of the director field in
the interchain gaps, it provides an effective chain bending
rigidity

WK = 1
2K��2u � �x2�2

= 1
2Kqx

4u0
2 sin2�qyy�cos2�qxx� . �2�

K is expected to be linearly related to the coefficients Ksplay,
Kbend describing elastic deformations of the c-director in the
smectic layers. The third energy density term accounts for
the interchain potential, approximated by

WB = 1
2B��u � �y�2

= 1
2Bqy

2u0
2 cos2�qyy�cos2�qxx� . �3�

We average these contributions over the �x ,y�-plane, us-
ing cos2�qxx�=cos2�qyy�=sin2�qyy�= 1

2 , sin3�qyy�=4/3�,
sin4�qyy�= 3

8 . The averaged specific energy is

w =
1

8
Kqx

4u0
2 +

1

8
Bqy

2u0
2 +

3�

256
qx

4u0
4 −

�

3�
Sqx

2u0
2 + ��

4
S2� .

�4�
All coefficients of this equation except one control parameter
s can be set to unity by introducing the dimensionless quan-
tities

Q4 = �K � Bqy
2�qx

4, U2 = �3� � 32K�u0
2,

W = �3� � 4BKqy
2�w, and s = �8� � 3�	BKqy�S .

One arrives at the equation

W = Q4U4 + Q4U2 + U2 − sQ2U2 �5�

where a constant �proportional to S2� has been dropped. Fig-
ure 5 shows the energy profiles for three selected values of s.
The extrema of W are found from dW /dU=4Q4U3+2Q4U
+2U2−2sQ2U=0, and dW /dQ=4Q3U4+4Q3U2−2sQU2=0.
These equations are satisfied by the trivial solution U=0
�chain compression, no buckling�. In addition, there are the
nontrivial solutions Q= ±1, U= ±	�s−2� /2 for s�2. The
interpretation is as follows: The wave number of the equilib-
rium deformation is 
Q
=1, independent of the excess satu-
ration s. Expressed in actual spatial coordinates,

qx
2 =	B

K
�� � 2y0� . �6�

This result had already been found in a simplified model,
valid in the limit of very large � �10�, i.e., for incompressible
chains. The amplitude of the deflection is zero when the

supersaturation s is below the critical value sc=2. At subcriti-
cal s, the nontrivial energy minima do not exist. This result
confirms the experimental data �Figs. 3�b� and 1� which in-
dicate that a slight supersaturation s leaves the droplet chains
circular. At s=sc, buckling sets in with an amplitude u0 that
increases with �s−sc�1/2.

The assumption of a sine quarterwave in the
��y�-dependence has been quite arbitrary in this model, but it
is very difficult to access these characteristics experimen-
tally. Thus we have chosen the simplest ansatz. Any other
smooth, monotonic function ��y� that starts from zero at
y=0 and reaches its maximum at y0 can be employed as
well. This will yield a certain different threshold sc, but the
qualitative picture remains valid.

Now we can discuss the experimental accessibility of
these model parameters. There is a good chance to access K
from the simulation of the director field with numerical or
analytical methods, since K can be completely reduced to an
elastic energy computation for straight and bent chains. The
interaction potential between the chains is also based entirely
on elastic interactions by the c-director field. Probably, it can

FIG. 5. Energy profiles −W�Q ,U� for s=2.1, 4.0, 10, respec-
tively. �left to right�. Positive values of W have been clipped.
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also be derived from numerical director field calculations
and a relation to the elastic constants can be found. The same
applies to the chain compressibility. Once the droplet inter-
action potential has been obtained, one can easily derive the
force constant. We note that all the discussed forces and en-
ergies scale linearly with the film thickness, so that the struc-
tures should not show any film thickness dependence.

Finally, we try a very crude estimation: K is simply set
equal to the averaged elastic constant �Ksplay+Kbend� /2, and
we approximate B with K�� /dC�2. Further we assume that
we have approximately n=10 filled chains �as in Fig. 2�, i.e.,
y0�10dC. Then we find from Eq. �6� the undulation wave-
length

� =
2�

qx
= 2��	K

B

2y0

�
�1/2

� 2�	 y0

n�

2y0

�
=	8

n
y0.

The wavelength is of a comparable length as y0, which is
satisfactorily confirmed by the experiment in Fig. 2. We can
also try to estimate at least the order of magnitude of the
force constant � when we consider that the critical value Sc
is of the order of probably 20% �Fig. 3�b��. Then,

2 = sc =
8�

3�	BKqy

Sc �
8�

3�

�

BdC

2y0

�
	 0.2, � � 1.2B ,

the chain compression coefficient � is of the same order of
magnitude as B. Even though our estimation is rather crude,
the result is quite reasonable. Both quantities originate from
the same physical effect, the distortion of the c-director field,
and the relative droplet displacement in the chains is smaller
but of the same order of magnitude as the interchain dis-
tances.

III. SUMMARY

Our model of the energetic conditions in elastic chains of
isotropic droplets in smectic-C films predicts, in qualitative
accordance with the experiment, the selection of a preferred
undulation wavelength independent of the excess droplet
density. In addition, a critical supersaturation

Sc = �3�2 � 8��	BK � �y0�
is found for the onset of spontaneous buckling. For subcriti-
cal S, the chains are slightly compressed but remain straight.
In the target patterns, they form circular, undeformed rings.

We have derived this result by making the simple assump-
tion here that the y-dependence of the droplet density is pro-
portional to sin�qyy�. Actually, this assumption is quite arbi-
trary, and one may ask how other model functions influence
the general results of the calculation. If one starts with �
=S sin2�qyy�, and qy =� /y0 instead, the droplet density of the
first and last chain are the same as in the previous calculation
�however, the average excess �̄=��dy decreases from
S	2/� to S /2�, but Eq. �1� changes to WL=� /2�S
−qx

2u0
2 /4�2sin4�qyy� and Eq. �4� is modified in the last two

terms to

w =
1

8
Kqx

4u0
2 +

1

8
Bqy

2u0
2 +

3�

256
qx

4u0
4 −

3�

32
Sqx

2u0
2 + �3�

16
S2� ,

�7�

and one has to redefine the dimensionless control parameter
by s= �3� / �4	BKqy��S, which does not influence the wave-
length selection but changes the critical value

Sc = �8� � 3��	BK � �y0� ,

i.e., the numerical prefactor changes from 3.70 to 8.37, with
all qualitative conclusions of the model remaining valid. A
change of this numerical factor is reasonable, it was noted
above that the total amount of excess chain material ��̄� for
the same parameter S is lower in the latter situation.

Although the model is applied here only to a very special
situation, its application is by far not restricted to this situa-
tion. With proper translation of the involved energy terms, it
has the potential to describe buckling phenomena of coupled
elastic chain or string arrays in different physical or biologi-
cal systems.
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